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Study of one-dimensional spectral dynamic
equations of the Reynolds stresses in
homogeneous anisotropic turbulence:

Application to split-spectrum modeling

By R. Schiestel 1

The CTR numerical data base generated by direct simulation of homogeneous

anisotropic turbulence has been used to calculate all of the terms in the spectral

balance equations for the turbulent Reynolds stresses. The aim is not only to test

the main closure assumptions used in the split-spectrum model, but also to try to

devise improved hypotheses deduced from the statistical information.

1. Description of the Split-Spectrum Model

1.1 Framework

The split-spectrum approach is a very simple way to introduce some spectral

information into one-point closure formalisms. The starting point is the spectral

equation for the Reynolds stress tensor _ij(k) originating from equations for the

two-point velocity correlations. The one-dimensional spectral equations are then

obtained by spherical integration in Fourier space. The split-spectrum scheme is

developed (Launder & Schiestel 1978, and Schiestel 1987 ) on the basis of partial

integration of the spectral equations over wavenumber intervals. The transport

equations for the partial stresses (figure 1) can be written formally:

d (m)
R_j

dt - P_?) + F_?-I) - F_?) + _7)- D_2) ' (I)

A B C D

where

.: f /= _oij(k)dk, and qij(k) = eij(k)dA(k). (2)
_rt--I

This multiple component splitting is such that the usual Reynolds stress Rij is given
by

M

Rij = Z RI'_ )" (3)
m----I

The different terms on the right side of (1) represent the following processes in

spectral slice m:
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FIGURE 1. Decomposition of wave space into discrete slices.

A) production of R_ ) by mean velocity gradients;

B) net turbulent flux into the slice including inertial cascade transfer, transfer due

to mean strain, and the effect of time varying kin;

Okra

Fij = NFij + LFij -- _ij Ot

C) redistribution by pressure-velocity correlations including the fast and slow

parts;

D) viscous dissipation.

The definition of the time varying wavenumbers kin, which is related to the energy

spectrum, and the hypotheses on energy transfer across the spectrum are used to

derive transport equations for the energy flux F = ½Fjj. In practical applications

M is usually 2 or 3 but here, for the purpose of testing hypotheses, we consider the

wavenumber intervals given by the discrete mesh of the simulation.

1.2 Hypotheses

All of the main closure hypotheses can be tested by using the simulation data.

These are:

• rapid pressure-strain term:

The relaxation-of-production approximation is

7) (4)
t' "e i-/ _' 3

• slow pressure-strain term:
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The local-return-to-isotropy approximation is

, RI?)
N'lt ij ,.,_ -C1 -_(Rij 3 $ij) (5)

Although this looks like Rotta's model, the behavior can be very different.

• inertial transfer of energy:

The Kovasznay model for the transfer of energy is

Nff _ "_ 7KE3/2 k 5/2 (6)

where E(k) = ]_pjj(k)

• energy transfer due to mean strain, Aij = O_/Oxj :

L_" _ ----

• slow transfer for stress components:

2k

5 _oijAij (7)

NFij "_ N.T'(a_- +

• rapid transfer for stress components:

A proposal of D. Jeandel and J. Mathieu is

2(I-a)
(8)

3

k k

LFij _ -2-6[_ti(Atj+ Aft) + _lj(A. + A/t)]- _IraAtra_ij (9)

These closure hypotheses are among the simplest ones that can be formulated.

Our goal is to use the results of the simulations to determine the accuracy of these

models and, when the models nmst be improved, to suggest the form of more

sophisticated approximations.

2. Use of the simulation data

2.1 Methodology

The simulation database provides the Fourier transform of the velocity field _i(k)

for one realization of the flow field. The equation for the Reynolds stress spectrum

tensor cI,ij(k) = _i(k)_j(-k) can be written in terms of velocity Fourier modes:

O'_ij 2Atmk_ t k _b ^0
Ot + AiltblJ + Ajl¢_il -_ _ i mj + kjC_im) --Arm Okra (klt_iJ)

pi$ LI-I, i LTi_

ikrakz

k 2
[ki_j(-k )uT_-m(k) - kj_i(k)uT_(-k)]

_r

NFI,_

+ ikra[_j(-k)u'_'ff-ra(k) - _i(k)u_'ff'ra(-k)] + 2vk2cbij = 0

N Ti.i ¢i.t

(10)
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FIGURE 2. Typical variation of statistical sample with scale. Case PXB4 is shown.

One-dimensional spectra are then obtained by summing over the sample within

spherical shells. Thus we readily get the necessary terms to test hypotheses (4) to

(9).
R!_) ,TAm) v(m)

z$ = E(m) _ij = X'_(m) NIIij Nrij = _/-_(m) NTij
NYij (11)

,rAm) = XT_(,n) nIIij r,(m)P_) = _--'("0 Pij n'rij Lrij -- _-'("0 LTij

This treatment has been carried out using an adaptation of Rogallo's (1981)

computer code. The program computes the balance of each component of the

Reynolds stress spectrum tensor, the sums (11), and performs the comparisons (4)

to (9) using flow fields from the stored database.

The transfer term, nTi.i in (10), is difficult to compute because derivatives with

respect to wavenumber can not be accurately calculated within the context of the

simulation. In the simulation, a coordinate system moving with the mean flow was

used to remove such derivatives. The problem of evaluating LTij has been avoided

by considering the gross flux n Fij. Using

/ LTijdk = /Atm_ijdA(k)

we find

_(m) 1 _._Lr j = ,s-g ' ij
(,_)

The simulation shell sample varies with wave number (figure 2). For low wave

numbers the sample increases as k 2 (spherical shell), but due to the anisotropy of

the wave-space grid the sample decreases at high wave numbers even before the

limit of resolution is reached. In this case, we do not obtain true spherical averages

because some directions are privileged.
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2.2 Test cases.

In order to reach some degree of generality, it is necessary to consider a number

of different flows. The following test cases from the CTR database have been

considered:

uniform shear

RR1288

isotropic decay
HIE1

simple strains and relaxation from them

HIA9 PXB4 B4R1 B4R6 (plane strain)

HIC6 AXL6 L6R1 L6R6 (axisymmetric contraction)

HID6 P6R1 P6R6 (axisymmetric expansion)

successive strains and relaxation from them

M2V1 M2V1R1 M2V1R5

K3V1 K3V1R1 K3V1R5

M2U1 M2UIR1 M2U1R5

The shear case is from Rogers et al (1986) and the remaining fields are from

Lee & Reynolds (1985).

3 Comparisons and discussion

3.1 Homogeneous shear

The spectra of the various terms in the transport equation for u 2 are shown in

figure 3a. All of the terms have been filtered using a (¼ I 1, :, _) molecule to reduce
noise, however the rapid transfer term remains rather noisy.

Figure 3b compares the gross-flux, linear "fast" part. and non-linear "slow" part

to their approximations given by (6) and (7). The Kovasznay hypothesis overesti-

mates the non-linear transfer (possibly due to the lack of an inertial range in the

simulation). The free model constants are taken as unity here and in the following

figures and we direct our attention to how well the spectral shape of the model con-

forms to that of the modelled term. All values are normalized using the appropriate

powers of kinetic energy and dissipation rate.

The fast. pressure term and the slow pressure term are compared in figure 3c to

their approximations given by (4) and (5). The results are encouraging.

The linear transfer is overestimated by (9), but the sign of the approximation

is generally correct and the shape of the curve is acceptable. The model (8) for

the slow-transfer tensor approximation, with a = 1, is often nearly satisfied. This

is illustrated for the u 2 component in figure 3d. Figure 3e shows the ratio of the

right side of (4) to the left side and can be interpreted as the variation of C2 with

wavenumber and with stress component. The jumps simply reflect the fact that the

zero crossings of the data are not predicted exactly by the model. For components

u 2, v 2, w 2, and _ the mean value of (72 = 0.6 that is frequently used in classical

one-point closure can be inferred. The same ratio for (5) is presented in figure 3f.

We see that the coefficient C1 increases continuously with k, implying a more rapid

return to isotropy at high wavenumbers.
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FIGURE 3. Homogeneous shear turbulence. Case RR1288 is shown. (a): budget

for R]]; .... production, .... fast pressure-strain, ----- slow pressure-strain,

-----fast transfer, ........ slow transfer,- dissipation. (b): gross energy transfer,

fast part; -- data, .... model (7), slow part; ----- data, ........ model (6).

$.Y_ Simple strains.

Comparisons like those above are presented in figures 4a to 4d for the case of

a plane strain. The models for the pressure terms compare favorably, but the

model (8) seems inadequate for the slow transfer terms. Similiarly, the model (6)

overestimates the nonlinear transfer of energy. The coefficients C1 and C2 both

increase slowly with k and are different for each component of the tensor.

$.$ Successive strains and relaxation
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FIGURE 3 (CONTINUED). (C): pressure-strain terms, fast part;

.... model (4), slow part; ---- data, ........ model (5).

data,

This is an interesting case and is particularly relevant for the multiple-scale ap-

proach. The M2V1 flow (figure 5) is the result of a strong axisymmetric contraction

followed by a plane strain. The M2V1R1 flow (figure 6) is the relaxation of M2V1

when the straining ceases. Most of the remarks in section 3.2 are still applicable.

In this particular case the simulation exhibits an increase of the Reynolds stress

anisotropy at the beginning of decay. This paradoxical effect can be produced by

(5) when the coefficient C] increases with wavenumber (this occurs for example in

figure 6b) and when the initial spectral distribution is such that anisotropies at large

and small scales are more or less compensating (this occurs in M2V1). Then a rapid

return to isotropy of the fine scales reveals the anisotropy of the larger scales which

was hidden temporarily (Schiestel 1986). Such a behavior cannot be obtained with

one-point models using the Rotta hypothesis. Some spectral information is neces-

sary to describe this phenomenon.

4. Concluding remarks.

Numerical simulations of turbulent flows provide a large amount of data, a

thought provoking wealth of information.

The main advantage of this type of comparison is that a great variety of flows can

be considered, and this is necessary to test closure hypotheses. Moreover various
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FIGURE 3 (CONCLUDED). (d): gross transfer of Rli, fast part; data,

.... model (9), slow part; data, ...... model (8). Variation of the pressure-

strain model coefficients for each component of Rij: (e) fast part, (f) slow part.

initial conditions can be introduced in the calculation, even if they are not experi-

mentally feasible. Various statistical information can be easily extracted from the

data. All the terms in the spectral equations can be calculated, and this is particu-

larly interesting for terms involving pressure correlations that cannot be measured.

The limited Reynolds numbers of the simulations and the statistical noise caused

by a small sample, particularly at the large scales, causes some difficulty in the

interpretation of the results, but the method of approach proved to be a powerful

tool for testing and improving spectral closures.
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shown. Evaluation of models for the pressure-strain and transfer terms. (a):

pressure-strain, fast part; _ data, .... model (4), slow part; ----- data,

........ model (5). (b): transfer, fast part; _ data, .... model (9), slow part;
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(9), slow part; ----- data, ........ model (8).



Study of one.dimensional spectral dynamic equations 107

c 2

2

C1 0

-2

\ /_

(e) .... i .....
0 1 2 3 4 5 6

K

FIGURE 5 (CONCLUDED). Variation of the pressure-strain model coefficient for

each component of Rij: (d) fast part, (e) slow part. -- R1] term,----- R22

term,---- R33 term.



108 R. Schiestel

-.010 /

I_11

-.015

-.020

/'
-.025 ] (a)! / ,

o 2 _,
K

2

0

-2

R22

-4

-6 !1
V

o 2 4
K

.030.

.025.

.020,

R33 "015t

•OlO1

.005.

0

0

/

!
_A/ _

K

2

Cl 0

-2
0

/ I ,/

_b,!....... // . . .
1 2 3 4 5 6

K

FIGURE 6. Relaxation of homogeneous turbulence subjected to complex strains.

Case M2V1R1 is shown. (a): Slow pressure-strain;--.-- data, ----- model (5).

(b): Variation of the slow pressure-strain model coefficient for each component

of R,_. Rlz term,-----R22 term,-----R33 term.


